Low-Rank Matrix Recovery via Rank One Tight Frame Measurements
نویسندگان
چکیده
منابع مشابه
Low-rank matrix recovery via rank one tight frame measurements
The task of reconstructing a low rank matrix from incomplete linear measurements arises in areas such as machine learning, quantum state tomography and in the phase retrieval problem. In this note, we study the particular setup that the measurements are taken with respect to rank one matrices constructed from the elements of a random tight frame. We consider a convex optimization approach and s...
متن کاملLow rank matrix recovery from rank one measurements
We study the recovery of Hermitian low rank matrices X ∈ Cn×n from undersampled measurements via nuclear norm minimization. We consider the particular scenario where the measurements are Frobenius inner products with random rank-one matrices of the form ajaj for some measurement vectors a1, . . . , am, i.e., the measurements are given by yj = tr(Xaja ∗ j ). The case where the matrix X = xx ∗ to...
متن کاملROP: Matrix Recovery via Rank-One Projections
Estimation of low-rank matrices is of significant interest in a range of contemporary applications. In this paper, we introduce a rank-one projection model for low-rank matrix recovery and propose a constrained nuclear norm minimization method for stable recovery of low-rank matrices in the noisy case. The procedure is adaptive to the rank and robust against small low-rank perturbations. Both u...
متن کاملOrthogonal Rank-One Matrix Pursuit for Low Rank Matrix Completion
In this paper, we propose an efficient and scalable low rank matrix completion algorithm. The key idea is to extend orthogonal matching pursuit method from the vector case to the matrix case. We further propose an economic version of our algorithm by introducing a novel weight updating rule to reduce the time and storage complexity. Both versions are computationally inexpensive for each matrix ...
متن کاملTight oracle bounds for low-rank matrix recovery from a minimal number of random measurements
This paper presents several novel theoretical results regarding the recovery of a low-rank matrix from just a few measurements consisting of linear combinations of the matrix entries. We show that properly constrained nuclear-normminimization stably recovers a low-rank matrix from a constant number of noisy measurements per degree of freedom; this seems to be the first result of this nature. Fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fourier Analysis and Applications
سال: 2017
ISSN: 1069-5869,1531-5851
DOI: 10.1007/s00041-017-9579-x